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Abstract

Stable queueing systems consisting of two groups of servers, having
exponential service times, placed in tandem and separated by a finite buffer,
are shown to have a steady-state probability vector of matrix-geometric

form. The queue is stable as long as the Poisson arrival rate does not

exceed a critical value, which depends in a complicated manner on the ser-
vice rates, the numbers of servers in each group, the size of the intermediate
buffer and the unblocking rule followed when system becomes blocked. The
critical input rate is determined in a unified manner.

For stable queues, it is shown how the stationary probability vector
and other impartant features of the queue may be camputed. The essential
step in the algorithm is the evaluation of the unique positive solution of a

quadratic matrix equation.
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1. Introduction

The queueing model consisting of two units in series with a finite
intermediate waiting roam has an extensive literature, dating back to 1956
with the work of G. C. Hunt [9]. The study of blocking in two or more units
in series without intermediate waiting spaces was initiated by B. Avi-
Itzhak and M. Yadin [2]. Further contributions to this model are due to
N. U. Prabhu [17] and A. B. Clarke [3].

Models in which there is a finite waiting roan between the two units and
the service times in the first unit have a general distribution were dis-
cussed by T. Suzuki [20], M. F. Neuts [11,12] and K. Hildebrand [7],
basically using transform methods which are not readily camputationally
implemented. The thesis by I. Hannibalsson [5] utilizes a buffer model to

represent a queue with delayed feedback. The second unit then represents a

holding stage for those customers who will rejoin the queue in front of
Unit I. In this paper and also in that by B. Wong, W. Giffin and R. L. i
Disney [22], the analysis of finite capacity buffer models is carried out |
- by fairly involved spectral decompositions of the transition probability
matrices. Related models, with finite total numbers of custamers were treated
in the papers by K. L. Arya [1] and O. P. Sharma [13]. These papers also do
not have an algorithmic orientation.

In recent years, there has been a growing interest in the development

of camputational methods to evaluate the stationary probability vector and

related quantities for tandem queues with blocking. This interest came ‘;
primarily fran the recognition that these models are useful in the study of

the behavior of subsystems of camputers. In addition to detailed des-

criptions of several computer-related applications, A. G. Konheim and M. |

Reiser [10] propose an algorithm for the solution of a system consisting of
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two single-server units with exponential service time distributions. They
also allow feedback of same departures fram the second server to the queue
in front of the first unit. In [18], these same authors further considered
more elaborate forms of feedback and discussed additional applications in
canputer modeling. Iterative numerical procedures of the Gauss-Seidel
type, such as proposed by F. S. Hillier and R. W. Boling [8], may also be
implemented for these models.

In addition, bounds on the blocking probability were investigated more
recently by F. G. Foster and H. G. Perros [4]. A particularly detailed study
of diffusion approximations in tandem queues is due to G. Newell [15,16].
The recent paper by J. M. Harrison [6] is also relevant in this context.

It is the purpose of this paper to show that a large number of buffer
models with exponential servers may be numerically solved in a unified way.
The key result identifies their stationary probability vector in a (modi-
fied) matrix-geometric form. Appropriately partitioning that vectar x as
(}_(0, X9 ...), we show that

L i-rt+l .
X; =%, R s faor 1 > r-1,

where r is the number of servers in the first unit. The matrix R is the
unique positive solution to a matrix quadratic equation. The spectral
radius of R is less than one. The r vectors XgseeesX, > are also uniquely
determined.

The approach, which is used here, is already implicit in the thesis of
V. Wallace [21], but the proofs are based on further refinements and genera-

lizations given in Neuts [13,14].




Description of the Model

The system consists of units I and II and a finite intermediate buffer.
Unit I consists of r parallel expanential servers, processing customers at
the same rate a. In Unit II, ¢ parallel exponential servers process cus-
tomers at the common rate B. Arrivals to Unit I occur according to a homo-
geneous Poisson process of rate A. (See Fig. 1.)

The servers in Unit II can be active as long as there are customers,
who have campleted a pass through Unit I and are requesting their service.
There are M-c-1 > 0 places in the buffer, so that at most M-1 custamers can
be either waiting in the buffer or being processed by one of the servers in
Unit II. If the number of customers who have completed a pass through Unit I
but have not cleared Unit II reaches M, one of the servers in Unit I becomes
blocked.

Depending on the application, the blocking of one or more servers in

' Unit I may affect the ability of the unblocked servers either to accept a

customer for service or to camplete a service in course. We shall assume

1 that when the number of blocked servers in Unit I reaches r*, 1 < r* < r,
all unblocked servers in Unit I also cease service. This situation will be

! referred to as full blocking.

In a partially blocked system, when a service campletion in Unit II
occurs, one of the blocked servers of Unit I releases his custamer into the
buffer. This server may now again initiate a service.

Next we specify the unblocking rule. In a fully blocked system there are

M + r* - 1 customers who have completed a pass through Unit I and are re-
questing service in Unit II. We define an integer k%, 0 < k% < Mtr#*-2.

When the number of customers, who have not been cleared by Unit II, drops to

k*, all interrupted services in the servers in Unit I resume and any free

M




servers can again initiate services.

We shall allow a feedback loop of departures fram Unit II back to the
; queue in front of Unit I. With probability 6' =1 -6, 0 <6 < 1, a cus-
taner who canpletes a service in Unit II leaves the system. Feedback
occurs with probability 6.

In order to concentrate only on parameters which have substantial sig-
nificance, we shall not discuss further extensions in which customers may
leave the system fram Unit I or may enter feedback loops fram the buffer to
Unit I or fram Unit II to the buffer. The relevant matrices which govern
such cases can be constructed easily; the theorems and algorithms discussed
below carry over routinely.

We also make the standard independence assumptions. All service times

and interarrival times are mutually independent randam variables. Fram a
numerical viewpoint, it is routine to consider extensions such as the case
where the rate of the Poisson arrival process depends on the number of

blocked servers in Unit I, but in arder not to add to the number of para- 1

meters of the model we shall not pursue this topic further.

Notational Convention

The material in this paper irwolves a large number of Jacobi matrices,

whose detailed definitions require display. A matrix such as

0 b0 S 0 0

B a, bl ¢y 0

2 0 a, b2 c, 1
m-2 j Gy Bpg Gy O
m-1 . -1 bm—l “m-1

m 0 0 an bm




will be displayed as

C0 Cl e Cm_3 Cm_2 Cm_l
By BB ol R R
al a2 a3 .o am_l am

2. The Structure of the Markov Process

Under the assumption of exponential service times for the servers in
Units I and II, the queueing model may be described as a continuous-parameter
Markov chain on the state space {(i,j), i > 0, 0 < j < N}, where N is a
finite nonnegative integer. The index i will denote the number of customers
queued up or in service in Unit I. Such customers will be called I-cus-
tomers. Upon campletion of a pass through Unit I, a customer becomes a
IT-customer. We note that because of the possibility of feedback, a cus-
tomer may be termed a I- or a [I-customer several times in succession before
leaving the system. The role played by the index j is more complicated to
describe and will be spelled out for the specific cases discussed below.

In all cases, however, the infinitesimal generator P of the Markov

chain will have the structure of a block-tridiagonal matrix of the form

A A A

02 B2 Az Mooy B By e
0 Pelhe Mg By v Aoy Bgn BOA
Mg Pog Pgg ooy By Ay By o v

where all entries are square matrices of order N + 1. The rows in the
block-partitioned matrix correspond to the sets of states
{(1,00,(i,1),...,(i,N)}, far i > 0.

We shall now give the detailed definitions of these blocks for various

models of increasing camplexity.




Model A

Unit I blocks as soon as there are M IT-customers in the system. All
c servers in Unit IT are busy; there are M-c-1 customers in the waiting
room and one server in Unit I has completed service of a customer who
cannot enter the waiting roam. Unblocking occurs as soon as a departure
from Unit IT occurs. In terms of our general description, Model A corres-

M-1.

1

ponds to r®* = 1, k¥

In this case N = M. The matrices AO’ A, and A2 are given by

1
| ra Tra o ra ro
A0 = Q 0 0 . 0 0 )
0 0 0 . 0
0 S 0 0 S 0 0
./\1 = -A-ra  =A-ra-8 etie -A-ra-(c-1)B -A-ra-cf e -A-ra-cf  =-A-cB
go! 280" cpo' cpe'! cpo'!
0 " 0 0 ok 0 0
A, = A X ’ A A oo A A
BO 288 S cRo CcRe owls CB8
and for 1 < i < r-1,
ia ia 3 ia o
AiO = 0 0 0 Simie 0 0 <
g 0 0 o 0

For 0 < i < r-1, the matrices Ai2 = Ay, and the matrices Ail are given by

ge'  2p8’ NI - LERE . N




The asterisks correspond to the negative diagonal éntrics, which are such
that the row sums of the matrix P are zero.
Model B

This model is as the preceding one, except that full blocking occurs only
when r*, 1 < r* < r, servers in Unit I are blocked. The index j now ranges
fran 0 to M + r*-1 and denotes the number of II-customers in the system.
Unblocking occurs again upon a subsequent departure from Unit II, which cor-
responds to the case k* = M + pr*-2,

The blocks in the partitioned matrix P are now of order M + r#*. They

are obtained by augmenting the blocks in Model A in a systematic manner.

Specifically
H... r¢« @a (@-2)a o (r-r*+2)a (r-r*+l)a
0 0 0 Srety 0 0
B o=
v 0 0 0 o 0
M Mtp-1
0 0 0 e 0 0
%
Al cpo' cpe' cpe! cpe'!
¢ ?
M Mtr=-1
5w 0 0 0 5 0 0
A2 = A A A oo A A
Ty [o]3:) CRO CcRHo CcRo

where the asterisks stand respectively for the entries -A-cB-(r-1l)a, ...,

-A-cB-(r-r*+l1)a, -A-cB, chosen so that the row sums of P are zero.




The matrices AiO are given by

+ee die min(r-l,ide min(r-2,ida ... min(r-r*+l,i)a
AiO =il... 0 0 0 et 0

0 0

1\

Mip=-]

ey O

farl < i< 1,

For 0 < i < r-1, the matrices Ai2 = A2 and the matrices Ail are given by

0 0 0 0
Ail = % (8 % % :
cRO'! cpe' cRe'

The asterisks correspond to the negative diagonal entries, which are
such that the row sums in the matrix P are zero.
Model C

In this model, we add fn;lrther complexity to Model B by assuming that
when full blocking occurs, Unit I does not become unblocked until the number
of IT-custamers drops to k*. In most cases of interest, we will have
c < k* < Mtr*-2, ard in order to limit the number of variants, we shall assume
that this is the case. The case k¥ = M#r#-2 corresponds to Model B, so Qe
only need to discuss the cases where c < k¥ < M#r#-3,

We now consider the indices j:

0, 1, oouy M-1, M, ..., Mr®-1, MFp¥ -2, M¥r*-3, ..., K*1.
The index values with a bar correspond to the situations where the Unit I ]
is blocked, alt};ough fewer than Mtr*-1 II-customers are in the system.
The blocks in the partitioned matrix P are now matrices of order

M+ 2rH-k -2,

———————




The matrices /\0 and Ai(]’ 1 < i <r-1, for this model are obtained by
adding Mtr*-k*-2 rows and columns to the corresponding matrices for Model
B. These rows and columns are identically zero.

The matrices A1 and Ai 0 < i < r-1, are obtained by adding Mtr#*-k#*-2

l’
rows and columns to the corresponding matrices for Model B, and changing
the row with index M#r#*-1. The diagonal elements to be added are all equal
to -A-cB. To the right of these diagonal elements we add an entry cge’',

except for the last row, where the entry cgg' is placed in the column

labeled k*. In the row with index Mtr*-1 the entry cpé' should appear

immediately to the right, rather than to the left of the diagonal entry.

All other added elements are zero. ‘ @

The matrices A2 and Ai2’ 0 < i < r-1, are similarly modified, with

entries A and cBf® now playing the role of the quantities -A-cB and cpe'.

We see that in the present model, the matrices are no longer Jacobi

matrices, but remain highly structured sparse matrices. The theoretical

results in this paper do not depend on the detailed structure of the blocks

in the partitioned matrix P, but particularly when the order of these

blocks becanes large, their sparsity may be exploited to economize on the
storage and processing time requirements of the algorithm.

3. Quasi-Birth-and-Death Process

Consider an irreducible continuous parameter Markov chain with state

space {(i,j); 1 > 0, 0 < j < N} and infinitesimal generator P of the farm (1).
Let us denote by x the vector of steady-state probabilities, associated to

P, x P =0, x e = 1, and define the conservative stable matrix A by A =

AO + Al + A2. We assume that A is irreducible and denote by 1 its vector

of steady-state probabilities, i.e. mnA=0,nme=1. Each canponent of n

is strictly positive. In the tandem queue models considered here, A will

obviously be irreducible.
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We partition x as X = (50, ...), where each vector X5 has N+1

Xy
canponents. We shall examine below the existence of a solution of the form

X, =X, Rl_r+l for i > r-1, where R has a spectral radius strictly less

than one (sp(R) < 1). For such a solution to exist, we must have that

T - R Y

By ot Bpeyilann g Y Biee Buis p =10 for 05 12 »-3,
(B Beoafs s " B bant Bl sl

ot T Rl R D, for i > p-1.

We shall show that in the positive recurrent case, a strictly positive
probability vector x of the stated form exists, for which the matrix R is a
nonnegative irreducible matrix of spectral radius sp(R) less than one and
such that A, + R A, + R° Aj = 0.

We now have to make several technical assumptions that are satisfied
for the models we consider:

a. A is nonsingular. By Wallac? [21], Theorem 3.1, a sufficient
condition is that A1 e < 0 which means that from any state (i,j), i > r,
it is possible to move in one step to a state (itl, j') or (i-1, j").
Wallace [21], Lemma 3.4, Ail is a nonpositive matrix witli strictly negative
diagonal elements.

2 5 ™y All’
row. A sufficient condition is that all diagonal entries of A2 are strictly

b. The matrix C has at least one nonzero element in each

positive, which means that arrivals can occur when the system is in any state
(1,5), 1 > r.

: x -1 N = :
c. If we define C0 = —AO A1 and C = C0 + C2, we assume that C is

irreducible.

The equation A2 + R A1 s R2 Ay = 0, may now be rewritten in the form

B 2
(3) R = C2 + R CO.




Lema 1

The matrix C has a maximal eigenvalue equal to one with corresponding

left and right eigenvector, respectively proportional to mand A e.

Proof :

S o =L
a. P_C‘I(A0+A2)Al‘E(A1'A)A1’1’
sincelA:p_.

b. CA g=—(AO+A2)_e_=(A1—A)e=A e,

=

since A e =

|©

Define the sequence {R(n), n > 0} of matrices as follows:
R(0) = 0,

R(n+l) = C. + RM2 ¢

2 for n > 0.

0 2
Theorem 1

If A0 e < 1A2 e, the equation R = C, *+ R2 C0 has a unique solution

R for which R > 0, sp(R) < 1. This solution is 3‘:’: R(n) and sp(R) = 1.

If n A0 e>m A2 e, the equation R = 02 + R2 C0 has a unique solution

R for which R > 0, sp(R) < 1. This solution, lnﬂ R(n), is the minimal sol-
ution to the equation and is irreducible.

Remark

Before proving the theorem, we observe that assumptions b. and c. above
are needed to prove that any matrix R satisfying equation (3) is irreducible.

In each of the buffer models that we consider, one can show easily that in

1lim
N>

fact R(n) is a strictly positive matrix.

Proof

This theorem is proved by repeating almost verbatim the argument given
in [14], Theorems 1 and 2, Lemmas 2, 3 and 4. We only indicate the main
steps of the proof here: |

- For all n, s R(n)< g, hence sp[R(n)] <1, for all n.
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- For all n, R(n+l) > R(n), therefore, the sequence converges .
monotonically to a matrix R such that

R=C2+R2C0_>_O,

T R<w, sp(R) < 1.

- Any matrix R > 0, with sp(R) < 1, which satisfies R = 02 + R2 CO’
is irreducible; its maximum eigenvalue n is a solution of the equation
n = 8(n), where for 0 < z < 1, 6(2) is the maximal eigenvalue of the irre-
ducible matrix C(z) = C2 + 22 Co-

- The equation z = 6(z), 0 < z < 1, has the unique solution n = 1,
iff 0'(1-) < 1. If 6'(1-) > 1, that equation has two solutions:
Ny =< 1 and n, = 1. Moreover, 68'(1-) = v C'(1) u, where vand uare

respectively the left and right Perron-Frobenius eigenvectors of C, nar-

malized so that ve =1, vu=1l. However, v=rand u= (1 A g)_lA

12
so that 6'(1-) = -2 1 A, e (x A) @ ", Clearly 6'(1-) < 1, if and only if
-2 1'.A2 e 3_1A1 e, (as Al e < 0) or equivalently, .
1Ay e<-m (Aj+A) e = -1 (A-Ay) e =1 Ay e.

- The matrix R = i’ﬁ R(n) is the minimal solution to the equation,

% 2
R-—C2+R CO’

matrix has as its spectral radius the smallest positive root of z = 6(z),

in the set of nonnegative matrices with sp(R) < 1. This

and is the only such matrix.

We now discuss the characterization of the vectors Xgr cves X 9 in
the case where 1 A0 e>n A2 e. By repeating an argument given in Neuts [13],
one may show that this is the only case for which the Markov process P is

positive recurrent.
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Let x* = (l(o, Xys eees zrhl)’ and

Pop. v g B s
T B By v B Ay,1t RA,
A A g

0 P v A g
Lemma 2
P# is an infinitesimal generator.

Proof

Since P is an infinitesimal generator and R A0 > 0, all off-diagonal
elements of P* are non-negative.

To prove that P=* £ = 0, one needs only consider the last N+l rows of
P*, since the other rows are identical to rows of P. However

1,08t Gy G 6= K et RME

—A2 e +R A0 e + v=X0 R (A2+RA1+R AD) e

w} o
RI-R)™ (AgtA +4,) e = 0.
Lemma 3
If A + R A, is irreducible, then P* ig irreducible.
r-1,1 0
Note that this condition is not necessary but obviously holds in the

models we consider.

Proof

P* is irreducible if and only if for all (i,j) and GREGR
(i,i% = 0,1, ..., vl J» 3" = 0,1, ..., N) there exists in P* a path from
(i,3) to (i',5'). As P is irreducible, there exists in P a path for all

such (i,j) and (i',3').

a. The path in P involves only states (1",3") with 0 <i" < p-1.

Then the same path exists in P,

ST SEPRICAEPEN
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b. The path in P involves some state (i",j") with i" > r.

Let (r—l,jl) and (r—l,jz) be defined as follows: (r—l,jl) is the last
state in the path before passage for the first time through a state (i*,j*)
with 1% > r; (r—l,jz) is the first state in the path after passage for the
last time through a state (i+,j+) with i > r. By the structure of P, those
states exist and in fact i* = i' = r.

If Ar-l,l + R A0 is irreducible, there exists a path from (r-l,jl) to
(r-l,jz) involving only states (r-1,3j") and, therefore, there exists in P#*
a path fram (i,j) to (1i',3").

Theorem 2
Under the assumption of Lemma 3 and 7 A

e>n A, e, let R > 0 be the

0 2
S P s - 2 % = 3 e ; o

minimal solution of R = C2 + R CO' Let x¥* = (>_<0, Xy eees l(r_l) be a

solution of x* P* = 0, then x* has components all of the same sign.

Furthermore x* may be normalized by

r-2 -1 !
CY) I X% e + x*® 1 (I=R) 5 e = 1.
v=0 g T o
The vector x = ()_(0, X5 v..) wWith
(5) x, =xi, for 0 < i < r-1,
X = X%, Rl'rﬂ, for r-1 < i,

is the unique, strictly positive steady-state probability vector of the

matrix P.

The proof is now obvious.

Remark

Since R is irreducible and sp(R) < 1, (I-R)-1 exists and is strictly

1
positive. |
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Corollary 1
(6) RA03=A23
Proof
A 2 oy =% _ad -1
R-C2+R CD- A2A1 R AOAI’
hence

and

2 2
-R(A0+A2) e = --A2 e -R AO e,

(I-R) A, e = (I-R) R Ay e

Since I-R is nonsingular, Formula (6) follows.
Remark

In the tandem queue models, considered here, Ay e is the vector of
rates of departure fran Unit I when all servers are busy. A2 e is the
vector of rates of arrival to the queue in front of Unit I. This
corollary shows that R plays a role similar to a traffic coefficient. In
numerical camputations, this relation serves usefully as an accuracy check
on the evaluation of R.

4. Explicit Forms of the Equilibrium Condition

For the specific versions A, B and C of the buffer model, the equili-
brium condition TAye > A, e, may be explicitly written in terms of the
parameters of the model. Although the analytic expressions of these expli-
cit forms are complicated, they all are of the general form
7 A< (l1-8) ra Vv
where 0 < ¥ < 1, and Y is a function of all the parameters of the model,

except for X and 6.
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The quantity (1-6) ro is the critical input rate of a system consisting
only of Unit I with a feedback probability 6. The entire right hand side of
(7) may be interpreted as the aritical input rate A\* to the system under
consideration. The dependence of A% on the various parameters of the model
provides us with a readily accessible means of comparing the effects of buffer
size and unblocking rules. It must be barne in mind, however, that queues faor
which A is close to or equal to A* will exhibit the typical, frequently
undesirable, long-range fluctuations inherent in near-critical queues.

Theorem 3

The vector m and the equilibrium condition = Ag &> 1 A, e, are given

by:
For Model A
; -1
c-1 J c M J
w o [T3EsieT
j=0 3 ' J=c
]
1 .
"jzf(?)_ LhE for 1 < 5 < a,
c A
= r :
1 njza—:(g‘i) T for e < j s M.
M-1
(9 x<(@Q-8)ra s = (1-8) ra (1-1rM).
j=0
For Model B (2 < r* < r)
: ; e =
L o c;l }-r(m)] , 8 b;l (m)J oC Mird 1 :1 j (
paud a ol oR ol '
0 j-_—o J. B C. j=C cB (o] j:M+l
3
wjz-}-!-(z—“) L for 1l < J <Gy
c 3
c ra s
e S (Y T fae 2 i for M+l < § < Mép®-1.
J el e i rjo’ -4 =




M-1 r*-1 3
(11) A < (1-8) rao D] R (1 ~\)
al 3=1 r M+]—l

r*-1 3
= (1-8) ra @ - TMepfio] " i‘ = ﬂM*'j—l) .
j=1
For Model C (1 < r® < r, c < k* < Mir#-2)
We shall give detailed formulas only for the most useful case where

¢ < k% < M-1. The equations far the other cases are entirely similar. We

denote by ﬁk=’¢+1’ ety ﬁM Fpfopd the components of m corresponding to the indices

J = k%1, ..., M¥r®-2. The explicit formulas far the components of T are
uninspiringly camplicated, but their numerical values may readily be computed

by solving the linear equations

(12) nj = 7 “j—l’ far 1l 23 %« e,
s = rc-% “3—1’ for o £ § < k%,
¥ AL R, e for k1 < § < M,

J cg -1 k%412

ﬂM"’j (l 5 )( ) M+J e k""’+l’ for 1 < < r#-2,
_— . | _CCPM+P-IP’1 "

ﬂM+r‘:':_1 i M+P'.':_.2 - sew - “k“"“‘l = .C_.!_ CB 3

@-:- ( \h gl( (1__)Mk-1( )h‘rr*-l.

Finally L is obtained fram the narmalizing condition mne=1.

M-1 r"-'-'-l( l)
(13) X < (1-8) ra R T 1 - dlee "
520 3j 5=1 r jJ M+j-1

Proof

where

M

We shall only sketch the proof for Model C. The equations = A = 0

may be written as

’
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(1) -ra m + Bnl =0,
Yo 5y - (ratis) " + (j+1)5“j+1 = 0, for 1 <j < e-1,
. - 0 . T . * . 0 e =
ra sy (ratcR) %5 cB Tael 6],}('"' CB My = 05

for c f..j iM-ly

(r-3)a "M*j—l = [}P-]-l)a 5 CB]7%“j + cB "M+j+l = 0,

for 0 < § < r%-3,
M#p#-3 ~ EP"P{H']»)“ + CB] "M"'P"‘-Z = 0, (for r* =z 2)

(r\...rr:'i"’l)a “P'1+r:-:—2 L Ce “Pi"'r"";—l = 0,

(r-r*+)a =

2 v BB

"Maptel T Mo Tttt T Meagge

These are clearly equivalent to

(15) ra "j-l = min(j,c)B s for 1 < j < k¥,
ra b 7 = cB 3 + cB LR for k%+l < j < M,
(r-j)a g1 cB Tt tCB Ty for 1 < j < r#-2,
(r-r¥+l)a Tapepting = OB TMptio]

= £ 7

Mertel T Tiersag T o0t T Ty

Equating the expression recursively camputed for TMptie] with fpps e

obtain the stated formula relating ﬁk=‘=+1 and L

The inequality m A0 e> A2 e, is equivalent to

@ M
A< I (raw. ., - jpem.) + I (ram. ., - cgew.)
j=1 -1 ] j=ctl -1 J
r#-1
2 .2 Er—j) “M+j_l - CcB O "M+j - ¢ 9 (M+r'.":"k*"2),
3=l

and by using the equations (14), we obtain Formula (13).
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Remarks
1. Tt is preferable not to write the geametric sums in (8) and (10) in
closed forms, so that we do not have to write separate expressions for the

case where ra = cB.

2. Forr=c =1, and A chosen, without loss of generality, to be equal to
one, we obtain for Model A that the queue will be stable if and only if

M ay M-1 a¥

i_: §)< (1-6)a f (E) -

v=0 v=0
This agrees, after elementary manipulations, with the conditions (2) for
a # B, and (3) for o = B, stated in Thm 2 of Konheim and Reiser ([10], p.
334). A minor correction is, however, needed in the statement of that theorem.
Condition (1), i.e. (1-8) min (a,8) > 1, is claimed to be the equilibrium
condition for the system where M = ». As it is implied by one of the other

conditions, dependiig on whether a # B or a = B, its inclusion in the

stability condition far finite M is clearly inappropriate.

5. The System Considered at Service Campletions in Unit I

Upon considering the numbers of I- and II-custamers immediately after
service completions in Unit T, we obtain a Markov chain with the states
(i,j), where i > 0 and j = 1, ..., Mtr*-1, In the interest of notational
simplicity, we shall preserve the earlier state space, but note that since
service completions during full blocking in Unit I are impossible, the states
with j = 0 and the additional states corresponding to full blocking are
ephemeral. Our formulas will correctly assign "steady-state probabilities"
equal to zero to all such states and it will not be necessary to adjust

the dimensions of the matrices which are involved.
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Theorem U

The staticnary probability vector z = (_2_0, 2y ..) of the embedded
Markov chain at service completions in Unit I is given by

(16) B T T X A}<+l,0’ for 0 < k 2 v-1,
& , Al k-r+2
E’k—r)—‘idlAOhTX-—r—lR AO, for k > r-1,

where t is given by

r-1 =5

-1
L B petx RUKT 4 ef .

i 17} T

The zero components in the vectors 2, are ignored.

Prcof

The farmulas (16) are readily obtained by a conditioning argument for

the elementary probabilities. The quantity T—ldt is clearly the elementary
probability that a service campletion occurs in (t,t+dt) and the components
of X4 Ak +1,0 dt or -)—%‘dlAO dt are elementary probabilities of transitions
of the type (k+1,3j) » (k,3").

Corollary 2

The camnponents with j =M + v, 0 < v < r®1, of the vector

N : : _nyl
(18) B2 X Bt | B At R IR AL,

yield the stationary probabilities that upon completion of a service in
Unit I, v + 1 servers are blocked in Unit I.

Tt would satisfy higher standards of rigor to set up explicitly the
transition probability matrix of the embedded Markov chain and to verify
that z is indeed its invariant vector. In order to avoid introducing a

large amount of extra notation, we shall only do this for the case r = 1.

In the process we shall also obtain a different formula for Z, which is also
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easily implemented and therefore provides us with an accuracy check in numer-
ical camputations.

Completely elementary probability arguments yield that for r = 1, the
transition probability matrix of the embedded chain is given by

B

g 5 B B B

o

A A Kz K3 B, ...
(19) Pz 0 7\0 Kl sz A‘a MIRTE IR

0 0 KO Kl 7\'2

0 0 0 KD Kl

.
.

Sipah g e
where An = (—Al A2) (-Al AO), and Bn = (—A01 Az) An, for n > 0.

The steady-state equations z P = z, will be satisfied by the vectors

defined in Formula (16) provided that
o+l k+l

v+l =
) xg R Ay = %9 R Ag (A 2)Ak+ Ao Ay B
for k > 0.
Since x, = x5 R (- Ay AOl) and using the explicit form of the matrices
Kn’ this equation may be equivalently rewritten as

k+ 1
(21) % [%k+l - (A, A 1)k+1

-1, kHl-v z
—AOAl)(-AA ) ]AD-

for k > 0.

v—l

In order to see that the matrix in square brackets in zero, write the
equation R = (-A, A'il) + R? (-7, A 1y, k+1 times. Multiply the v-th equation
on the left by R and on the right by (-A, A‘l)k"" 1 and sum up.

Finally the expression for t is obtained fram the normalizing equation

ze= 1.

9,
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Corollary 3

In the case r = 1, the vector Z is also given by

(22) Z= (A, 1A,

s =1 -1 -1
T X (A01+A2) (A1+A2) A0 E- (m A0 e) AO I Aa (A1+A2),
where Il is a matrix with M + 1 identical rows given by =.
Proof
Adding the steady-state equations for the matrix P, we obtain
-1 " -1 -1 -1
(23) 2 E + (A1+A2) AE] =2 (-AO:L Az) E(A1+A2) A0] -EOE(AfAZ) Aa.
The matrix —(A1+A2)":L A0 is a stochastic matrix, whose first column is zero.
All other elements are strictly positive. It has the left invariant vector
T AO’ whose first component is zero and all other components strictly posi-
tive. It now follows readily fram the theory of finite Markov chains that
the matrix
@I+ @Ba) A + ae)na =@an)s- aeyTa na
} 2 0 — 0= 0 12 — 0= 0 0}.:

is nonsingular. Adding (m A0 _c_a_)_l ZnA, = (n A0 g_);l lAO’ to both sides

0
of Equation (23) and replacing X, R (-A0 Aaji) by Xg> we obtain the stated
formula after routine matrix manipulations.
We note that the formula assigns the correct value zero to the first
component of Z. Verifying that the result so obtained agrees with Z =
T X R (I—-R)—l AO’ (Cor. 2) provides a partial check on numerical computa-

tions.

6. Remarks on Numerical Camputations

The solution, presented here, lends itself to a ready numerical imple-
mentation. Efficient programming, which takes the high degree of sparsity
of the transition probability matrix into account, results in substantial

savings in memory storage and execution times. This is particularly worth-
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while when the program is to be used to study the design and control aspects
of the model. In such studies, one or more parameters of the model need to
vary over a range of values, which may require a substantial number of
executions of the program. In view of the complicated dependence of the model
on each of its parameters, detailed numerical studies appear to be the only
way of obtaining the hard qualitative information needed in problems of
design and optimization. Such a numerical implementation is currently being
done. The qualitative results derived from it will be discussed elsewhere.
The first step, after ascertaining that the queue is stable, is to
compute the matrix R. This may be done by successive substitutions in the

il

< u - 2 -1 : s H :
equation R = -A2 A1 - R A0 A1 , starting with R = 0. The relation

R AO e = A2 €, proved in Lenmma 2, serves as an accuracy check.

If r > 1, the vectors X, 1> are computed by solving the system

Xgs eees
of linear equations, discussed in Theorem 2. Since the number of equations in
that system may be very large, it is again desirable to take the special

structure of its coefficient matrix into account. Thic may be done as follows.

In the system

e R T
Zy-1 Av-l,? - A\),l T oeel A\:+l,0 - RSy AT

+  ; =
X2 Anez,2 Y By A1) = 0
the matrices Av sy 05w g r-2, are clearly nonsingular, so that, using all
b

but the first equation, we can write the vectors Xgs ++es X _o» @S
X, ® X, C:, 0 < v < r-2, where the matrices CV are readily camputed. The
first equation now yields

4 &
(26) X Cq Agp * Cp Ay = 05

which together with the normalizing condition

M
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-2 & =
27) X1 E. Cv e+ (I-R) " e] =1,
v=0
uniquely determines the vector X and hence also the vectors Xgs sees
! X, o

If there is need to economize on memory storage, as when r and the
order of the matrices are large, we can avoid storing the matrices Cv, as
they may be evaluated recursively. This can be done using only three arrays
of size N x N and one linear array of length N. In the latter the vector
r;Z Cv e is accumulated. This does not significantly increase the processing
Eme, as the systems of equations X, A\)2 = d, where d is a known vector,
are particularly easy to solve.

The simplifications, discussed above, are particularly striking when
8 = 0, (no feedback) as the matrices sz, 0 < v <r-2, are then scalar

matrices.

The remaining camputations of the vector x, of various maments and of
the marginal queue length densities, as well as the blocking probabilities

are now entirely routine.
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